IRON CARBONYL COMPLEXES CONTAINING AN AZOMETHYNE MOIETY

I. SYNTHESIS AND X-RAY STRUCTURE OF A NOVEL
 σ, π-ARENE-BRIDGED COMPLEX, $\mu-\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{8}$

N.S. NAMETKIN *, V.D. TYURIN, A.I. NEKHAEV, YU.P. SOBOLEV, M.G. KONDRAT'EVA
Topchiev Institute of Petrochemical Synthesis, Academy of Sciences of the U.S.S.R., 29 Leninskii Prosp., Moscow (U.S.S.R.)

A.S. BATSANOV and YU.T. STRUCHKOV *

Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., 28 Vavilov St., Moscow (U.S.S.R.)
(Received August 19th, 1982)

Summary

N-(Benzylidene)aniline (BZA) reacts with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ yielding μ-(o$\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (I), $\mu-\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{8}$ (II) and various products from the reduction and carbonylation of BZA and its fragments. II was characterized by X-ray crystallography and proved to be the first complex prepared with a $\sigma, \pi\left(\eta^{1}, \eta^{6}\right)$-bridging arene ligand.

Introduction

Iron carbonyls form a wide variety of complexes with nitrogen-containing ligands [1], and are able to ortho-metallate the N-substituted aromatic rings of those ligands [2-8]. This reaction usually yields binuclear complexes, e.g. Schiff base diiron complexes [2,3]. However, no trinuclear complexes have been prepared by this route.

In the present paper we report the first example of such a triiron complex, obtained from the simplest aromatic Schiff base: N-(benzylidene) aniline (BZA).

Results and discussion

Treatment of BZA with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ produced, besides complex I (previously prepared from $\left.\mathrm{Fe}_{2}(\mathrm{CO})_{9}[2,3]\right)$, a novel trinuclear complex, II (eq. 1).

Besides iron complexes, some products of the reduction and carbonylation of BZA and its fragments (viz., $\mathrm{PhNH}_{2}, \mathrm{PhCH}_{2} \mathrm{OH}, \mathrm{PhCH}_{2} \mathrm{NHPh}, \mathrm{PhNHNHPh}$ and phthalimidine) were detected in the reaction mixture by gas-liquid chromatography

and mass spectroscopy. The presence of reduction products indicates that iron carbonyl hydrides are probably the intermediates of this reaction. As Andrews and Kaesz have found [9,10], such iron carbonyl hydrides may form in the reaction between iron carbonyls and organic nitriles, if the system contains a source of hydrogen. In contrast to reported data [11], we observed no promoting effect from tungsten carbonyl on this reaction.

Compound II is a brown crystalline substance, rather stable in the solid state and decomposing slowly in solution. It is poorly soluble in n-heptane and moderately soluble in benzene, chloroform and alcohols. A thermogravimetric study of II demonstrated that its thermal decomposition begins at $50^{\circ} \mathrm{C}$ without melting and proceeds in three stages: (1) slightly endothermic elimination of two CO groups at $50-140^{\circ} \mathrm{C}$; (2) strongly endothermic loss of six CO groups and a half equivalent of Fe (the latter probably in the form of volatile $\mathrm{Fe}(\mathrm{CO})_{5}$) per molecule of II, and a small part of organic ligand at $140-172^{\circ} \mathrm{C}$; (3) complete elimination of the organic part of II, without any thermal effect at $172-250^{\circ} \mathrm{C}$. The mass of the non-volatile

Fig. 1. Molecular structure of the complex II (hydrogen atoms are omitted).
residue corresponds to 2.5 equivalents of iron per molecule of II.
The molecular structure of II, determined by X-ray crystallography, is shown in Fig. 1. Bond lengths and angles are listed in Tables 1 and 2. The molecule contains a non-linear $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{Fe}(3)$ framework. All eight carbonyl groups are terminal, two are bonded to $\mathrm{Fe}(3)$ and three each to $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$. The organic ligand bridges $\mathrm{Fe}(1)$ and $\mathrm{Fe}(2)$ by the μ_{2} nitrogen atom (which thus achieves a tetrahedral environment) and bridges $\mathrm{Fe}(1)$ and $\mathrm{Fe}(3)$ by the $\mathrm{C}(10) \cdots \mathrm{C}(15)$ arene ring.

The $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ distance $(2.452(1) \AA$) is somewhat longer than strong $\mathrm{Fe}-\mathrm{Fe}$ bonds ($2.37-2.42 \AA$) in diiron complexes bridged by two $s p^{3}$ hybridized nitrogen atoms [12]. The essentially equal $\mathrm{Fe}-\mu-\mathrm{N}$ distances (mean $2.010(6) \AA$) in II fall within the range observed in such complexes $(1.96-2.02 \AA)$, while the $\mathrm{Fe}(1) \mathrm{NFe}(2)$ angle ($75.2(2)^{\circ}$) is slightly larger than FeNFe angles ($72.5-74.4^{\circ}$) in those complexes. The non-bridged $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ distance $(2.822(1) \AA)$ is ca. $0.4 \AA$ longer than the $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ one, but is comparable with the non-bridged $\mathrm{Fe}-\mathrm{Fe}$ bond length $(2.787(2) \AA)$ in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}^{+}\right]_{2}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{8}{ }^{2-}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ [13] and with the $\mathrm{Fe}-\mathrm{Fe}$ distance in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left\{\mu-\mathrm{P}\left(\mathrm{CF}_{3}\right)_{2}\right\rangle_{2}$. In the latter complex the existence of an $\mathrm{Fe}-\mathrm{Fe}$ bond is confirmed by MO calculations and by its diamagnetism [14]. Thus, in II the $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ interaction can be regarded as a metal-metal bond.

The most unusual feature of II is the bridging function of the $\mathrm{C}(10) \cdots \mathrm{C}(15)$ aromatic ring. It is $\boldsymbol{\sigma}$-bonded to $\mathrm{Fe}(1)$ via $\mathrm{C}(11)$ and is coordinated in a $\boldsymbol{\eta}^{6}$-mode to $\mathrm{Fe}(3)$. To our knowledge, II is the fourth example of η^{6}-areneiron complexes studied structurally, the previously studied ones being $\left[\mathrm{Fe}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]\left[\mathrm{PF}_{6}\right.$] [15], $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\boldsymbol{\eta}^{6}\right.$-fluorenyl) [16], $\left(\boldsymbol{\eta}^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right) \mathrm{Fe}\left(\eta^{5}-2,3-\mathrm{Me}_{2}-2,3-\right.$ $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$) [17], and the first complex with a $\boldsymbol{\eta}^{1}, \eta^{6}$-bridging arene. Previously, such a σ, π-bridging arrangement of aromatic ring had been reported when cyclopentadienyl acted as such a ligand [18].

The $\mathrm{Fe}(1) \cdots \mathrm{Fe}(3)$ distance $(3.967(1) \AA)$ is too long for covalent interaction.
The five carbons of the phenylene ring, $\mathrm{C}(11)$ to $\mathrm{C}(15)$, are coplanar within 0.005

TABLE 1
BOND LENGTHS (A)

Bond		Bond		Bond	
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.452(1)$	$\mathrm{Fe}(3)-\mathrm{C}(11)$	$2.238(6)$	$\mathrm{N}-\mathrm{C}(16)$	$1.452(7)$
$\mathrm{Fe}(2)-\mathrm{Fe}(3)$	$2.822(1)$	$\mathrm{Fe}(3)-\mathrm{C}(12)$	$2.159(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.481(9)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1.798(8)$	$\mathrm{Fe}(3)-\mathrm{C}(13)$	$2.135(7)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.441(9)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1.795(7)$	$\mathrm{Fe}(3)-\mathrm{C}(14)$	$2.114(7)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$1.408(9)$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1.804(6)$	$\mathrm{Fe}(3)-\mathrm{C}(15)$	$2.118(6)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.434(9)$
$\mathrm{Fe}(1)-\mathrm{C}(11)$	$1.969(6)$	$\mathrm{Fe}(3)-\mathrm{Bz}{ }^{a}$	1.609	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.420(9)$
$\mathrm{Fe}(1)-\mathrm{N}$	$2.004(4)$	$\mathrm{C}(1)-\mathrm{O}(1)$	$1.131(9)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.397(9)$
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1.793(7)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.137(8)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.416(9)$
$\mathrm{Fe}(2)-\mathrm{C}(5)$	$1.783(7)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.146(8)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.390(9)$
$\mathrm{Fe}(2)-\mathrm{C}(6)$	$1.775(7)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.150(9)$	$\mathrm{C}(16)-\mathrm{C}(21)$	$1.388(9)$
$\mathrm{Fe}(2) \cdots \mathrm{C}(11)$	$2.427(6)$	$\mathrm{C}(5)-\mathrm{O}(5)$	$1.143(9)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.387(9)$
$\mathrm{Fe}(2)-\mathrm{N}$	$2.016(5)$	$\mathrm{C}(6)-\mathrm{O}(6)$	$1.141(8)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.36(1)$
$\mathrm{Fe}(3)-\mathrm{C}(7)$	$1.762(7)$	$\mathrm{C}(7)-\mathrm{O}(7)$	$1.153(9)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.38(1)$
$\mathrm{Fe}(3)-\mathrm{C}(8)$	$1.765(7)$	$\mathrm{C}(8)-\mathrm{O}(8)$	$1.143(9)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.397(9)$
$\mathrm{Fe}(3)-\mathrm{C}(10)$	$2.102(6)$	$\mathrm{N}-\mathrm{C}(9)$	$1.507(8)$	$\mathrm{C}-\mathrm{H}$	$0.93-1.10$, av. 1.05

[^0]TABLE 2
BOND ANGLES $\left({ }^{\circ}\right)$

Angle		Angle		Angle	
$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{N}$	52.6 (1)	$\mathrm{NFe}(2) \mathrm{C}(4)$	111.6(3)	$\mathrm{Fe}(2) \mathrm{C}(5) \mathrm{O}(5)$	178.4(6)
$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{C}(1)$	150.5(2)	$\mathrm{NFe}(2) \mathrm{C}(5)$	151.8(3)	$\mathrm{Fe}(2) \mathrm{C}(6) \mathrm{O}(6)$	178.5(6)
$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{C}(2)$	101.1(2)	$\mathrm{NFe}(2) \mathrm{C}(6)$	92.2(3)	$\mathrm{Fe}(3) \mathrm{C}(7) \mathrm{O}(7)$	176.8(7)
$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{C}(3)$	104.9(2)	$\mathrm{NFe}(2) \mathrm{C}(11)$	67.8(2)	$\mathrm{Fe}(3) \mathrm{C}(8) \mathrm{O}(8)$	177.7(7)
$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{C}(11)$	65.5(2)	$\mathrm{C}(4) \mathrm{Fe}(2) \mathrm{C}(5)$	95.7(3)	$\mathrm{NC}(9) \mathrm{C}(10)$	105.9(5)
$\mathrm{NFe}(1) \mathrm{C}(1)$	103.7(3)	$\mathrm{C}(4) \mathrm{Fe}(2) \mathrm{C}(6)$	95.4(3)	$C(9) \mathrm{C}(10) \mathrm{C}(11)$	$113.2(5)$
$\mathrm{NFe}(1) \mathrm{C}(2)$	153.6(3)	$\mathrm{C}(4) \mathrm{Fe}(2) \mathrm{C}(11)$	127.3(3)	$\mathrm{C}(9) \mathrm{C}(10) \mathrm{C}(15)$	123.2(6)
$\mathrm{NFe}(1) \mathrm{C}(3)$	97.3(3)	$\mathrm{C}(5) \mathrm{Fe}(2) \mathrm{C}(6)$	92.2(3)	$\mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(15)$	123.6(6)
$\mathrm{NFe}(1) \mathrm{C}(11)$	78.0(2)	$\mathrm{C}(5) \mathrm{Fe}(2) \mathrm{C}(11)$	90.4 (3)	$\mathrm{Fe}(1) \mathrm{C}(11) \mathrm{Fe}(2)$	66.9(2)
$\mathrm{C}(1) \mathrm{Fe}(1) \mathrm{C}(2)$	100.1(3)	$\mathrm{C}(6) \mathrm{Fe}(2) \mathrm{C}(11)$	136.7(3)	$\mathrm{Fe}(1) \mathrm{C}(11) \mathrm{C}(10)$	113.7(4)
$\mathrm{C}(1) \mathrm{Fe}(1) \mathrm{C}(3)$	94.7(3)	$\mathrm{Fe}(2) \mathrm{Fe}(3) \mathrm{C}(7)$	94.8(2)	$\mathrm{Fe}(1) \mathrm{C}(11) \mathrm{C}(12)$	132.5(5)
$\mathrm{C}(1) \mathrm{Fe}(1) \mathrm{C}(11)$	94.6(3)	$\mathrm{Fe}(2) \mathrm{Fe}(3) \mathrm{C}(8)$	96.7(3)	$\mathrm{Fe}(2) \mathrm{C}(11) \mathrm{C}(10)$	95.0(4)
$\mathrm{C}(2) \mathrm{Fe}(1) \mathrm{C}(3)$	$91.9(3)$	$\mathrm{C}(7) \mathrm{Fe}(3) \mathrm{C}(8)$	86.9(3)	$\mathrm{Fe}(2) \mathrm{C}(11) \mathrm{C}(12)$	115.2(4)
$\mathrm{C}(2) \mathrm{Fe}(1) \mathrm{C}(11)$	89.0(3)	$\mathrm{Fe}(2) \mathrm{Fe}(3) \mathrm{Bz}$	96.8	$\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(12)$	113.3(5)
$\mathrm{C}(3) \mathrm{Fe}(1) \mathrm{C}(11)$	170.3(2)	$\mathrm{C}(7) \mathrm{Fe}(3) \mathrm{Bz}$	137.5	$\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(13)$	123.8(6)
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{Fe}(3)$	97.32(4)	$\mathrm{C}(8) \mathrm{Fe}(3) \mathrm{B} 2$	131.7	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(14)$	120.0(6)
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}$	52.2(1)	$\mathrm{Fe}(1) \mathrm{NFe}(2)$	75.2(2)	$\mathrm{C}(13) \mathrm{C}(14) \mathrm{C}(15)$	$118.9(6)$
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{C}(4)$	163.4(2)	$\mathrm{Fe}(1) \mathrm{NC}(9)$	109.3(3)	$\mathrm{C}(10) \mathrm{C}(15) \mathrm{C}(14)$	120.0(6)
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{C}(5)$	100.0 (2)	Fe(1)NC(16)	124.7(4)	$\mathrm{NC}(16) \mathrm{C}(17)$	$119.7(5)$
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{C}(6)$	89.5(2)	$\mathrm{Fe}(2) \mathrm{NC}(9)$	112.3(3)	$\mathrm{NC}(16) \mathrm{C}(21)$	120.0(5)
$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{C}(11)$	47.6(1)	$\mathrm{Fe}(2) \mathrm{NC}(16)$	123.9(4)	$\mathrm{C}(17) \mathrm{C}(16) \mathrm{C}(21)$	120.1(6)
$\mathrm{Fe}(3) \mathrm{Fe}(2) \mathrm{N}$	95.1(1)	$\mathrm{C}(9) \mathrm{NC}(16)$	108.0(4)	$\mathrm{C}(16) \mathrm{C}(17) \mathrm{C}(18)$	$118.8(6)$
$\mathrm{Fe}(3) \mathrm{Fe}(2) \mathrm{C}(4)$	79.2(2)	$\mathrm{Fe}(1) \mathrm{C}(1) \mathrm{O}(1)$	178.2(6)	$\mathrm{C}(17) \mathrm{C}(18) \mathrm{C}(19)$	$122.2(7)$
$\mathrm{Fe}(3) \mathrm{Fe}(2) \mathrm{C}(5)$	82.8(2)	$\mathrm{Fe}(1) \mathrm{C}(2) \mathrm{O}(2)$	177.2(6)	$\mathrm{C}(18) \mathrm{C}(19) \mathrm{C}(20)$	119.0(7)
$\mathrm{Fe}(3) \mathrm{Fe}(2) \mathrm{C}(6)$	172.1(2)	$\mathrm{Fe}(1) \mathrm{C}(3) \mathrm{O}(3)$	175.9(6)	$\mathrm{C}(19) \mathrm{C}(20) \mathrm{C}(21)$	120.7(7)
$\mathrm{Fe}(3) \mathrm{Fe}(2) \mathrm{C}(11)$	49.8(1)	$\mathrm{Fe}(2) \mathrm{C}(4) \mathrm{O}(4)$	171.3(6)	$\mathrm{C}(16) \mathrm{C}(21) \mathrm{C}(20)$	119.3(6)

\AA, or less than 1σ. The $\mathrm{C}(10)$ atom is tilted by $0.06 \AA$ out of their mean plane (referred below as A) towards the exocyclic C(9) atom. The latter is tilted by $0.24 \AA$ out of plane A and only by $0.06 \AA$ A out of the plane through $\mathrm{C}(10), \mathrm{C}(11)$ and $\mathrm{C}(15)$. The arene ring is folded along the $\mathrm{C}(11) \cdots \mathrm{C}(15)$ direction by 5°, i.e. adopts a boat conformation to release the steric strain of the $\overline{\mathrm{Fe}(1) \mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(9) \mathrm{N}}$ cycle. This strain manifests itself in the decrease of $\mathrm{Fe}(1) \mathrm{C}(11) \mathrm{C}(10)$ and $\mathrm{C}(9) \mathrm{C}(10) \mathrm{C}(11)$ angles to 113.7 and 113.2°, respectively, compared with the normal value of 120°. The $\mathrm{Fe}(3)$ atom is located at $1.62 \AA$ from the plane A (in the same direction as $\mathrm{C}(9)$ and $\mathrm{C}(10)$), while the $\mathrm{Fe}(1)$ atom is $0.28 \AA$ from this plane in the opposite direction. A rather short intramolecular $\mathrm{Fe}(2) \cdots \mathrm{C}(11)$ distance of $2.427(6) \AA$ is imposed by the overall molecular geometry and does not indicate a bonding interaction, as the environment of $\mathrm{C}(11)$ by $\mathrm{Fe}(1), \mathrm{C}(10)$ and $\mathrm{C}(12)$ remains planar (the sum of bond angles is 359.5°).

Both the A and $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}$ planes are almost normal to the plane of the Fe_{3}-framework (the corresponding dihedral angles are 84.8 and 89.2°). The uncomplexed $C(16) \cdots \mathrm{C}(21)$ phenyl ring is planar within $0.003 \AA$. The nitrogen atom is tilted by $0.11 \AA$ (i.e. the $\mathrm{N}-\mathrm{C}(16)$ bond is bent by 4.4°) out of the phenyl plane.

The bonding in II can be described as intermediate between the forms 1 and 2. The contribution of $\mathbf{2}$ is indicated by the following features: (a) the $\mathrm{Fe}(3)-\mathrm{C}(11)$
distance of $2.238(6) \AA$ is significantly longer than the other $\mathrm{Fe}(3)-\mathrm{C}$ (arene) distances (2.102-2.159 \AA); (b) the $C(10)-C(11)$ and $C(11)-C(12)$ bonds are the longest ones in the complexed arene ring; (c) the $\mathrm{Fe}(1)-\mathrm{C}(11)$ distance of $1.969(6) \AA$ falls within the range found for $\mathrm{Fe}-\mathrm{C}$ (carbene) double bonds (1.88-2.04 \AA [19]), though some formally single $\mathrm{Fe}-\mathrm{C}$ bonds were reported to have the same lengths (i.e. the $\mathrm{Fe}-\mathrm{C}$ (pyridine) bond of $1.976(6) \AA$ in $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6} \mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}$ [20]).

(1)
(2)

In both structures 1 and 2 each iron atom achieves an 18-electron configuration, in accordance with diamagnetism of II.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker WH-90 instrument (90 MHz) in CDCl_{3} with TMS as internal standard, IR spectra with a UR-20 spectrophotometer in CCl_{4} and mass spectra with a LKB 2091 instrument (direct injection of the ion source at $50^{\circ} \mathrm{C}$, ionization energy of 12 eV and emission current of $25 \mu \mathrm{~A}$). The thermogravimetric study was carried out with a Paulik-Paulik-Erdey (Hungary) derivatograph under argon, using a heating rate of $3^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ and calcined $\mathrm{Al}_{2} \mathrm{O}_{3}$ as standard.

An X-ray diffraction experiment was carried out with a Syntex P2, diffractometer at $-120^{\circ} \mathrm{C}$, using graphite-monocromated $\mathrm{Mo}-K_{\alpha}$ radiation.

Crystal data: II, $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{Fe}_{3} \mathrm{NO}_{8}, M=572.9$, orthorombic, at $-120^{\circ} \mathrm{C} a=$ $7.520(1), b=14.338(3), c=19.062(4) \AA, V=2055.2(6) \AA^{3}, Z=4, d_{\text {calcd }}=1.85 \mathrm{~g}$ cm^{-3}, space group $P 2_{1} 2_{1} 2_{1}$.

1943 independent reflections with $I \geqslant 2 \sigma$ were measured by the $\theta / 2 \theta$ scan technique ($2 \theta \leqslant 50^{\circ}$). The structure was solved by direct methods and refined by full matrix least squares with anisotropic thermal parameters for all non-hydrogen atoms to give $R=0.055$. Further refinement (with inclusion of anomalous dispersion terms for Fe) of the two enantiomeric models converged to $R=0.0452, R_{\mathrm{w}}=0.0490$ and $R=0.435, R_{\mathrm{w}}=0.0482$, respectively. All hydrogen atoms were located from a difference Fourier map and included in the calculation of structure factors as fixed contributions (see Table 4). Further refinement (after discarding the strong, extinc-tion-affected 002 reflection) converged to $R=0.0347, R_{\mathrm{w}}=0.0318$ and $R=0.0327$, $R_{\mathrm{w}}=0.0303$ for the two models. Thus, according to the Hamilton test [21], the absolute configuration of II corresponds to the second enantiomeric model with a probability of more than 99.5%. Final positional and thermal atomic parameters are listed in Tables 3 and 4.
TABLE 3. ATOMIC COORDINATES ($\times 10^{4}$), ANISOTROPIC AND EQUIVALENT ISOTROPIC THERMAL FACTORS ${ }^{a}$

Atom	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}	$\mathrm{B}_{\text {ese }}^{\text {eq }}(\times 10)$
$\mathrm{Fe}(1)$	6258(1)	-767.5(6)	2448.8(4)	20.8(4)	15.6(3)	17.7(3)	0.5(3)	0.0 (3)	1.1(3)	18.0(2)
$\mathrm{Fe}(2)$	8397(1)	434.7(6)	2096.0(5)	13.7(4)	20.5(4)	18.6(3)	1.4(3)	-0.3(3)	0.5(3)	17.6(2)
$\mathrm{Fe}(3)$	6925(1)	821.4(7)	765.4(5)	17.2(4)	21.8(4)	18.9(3)	-0.6(4)	-1.4(3)	4.5(3)	19.3(2)
$\mathrm{O}(1)$	2600(7)	- 1436(3)	2608(3)	30(3)	32(2)	50(3)	$-7(2)$	3(2)	8(2)	37(2)
$\mathrm{O}(2)$	7890(8)	-2418(3)	1809(2)	44(3)	24(2)	35(2)	10(2)	4(2)	-5(2)	34(1)
$\mathrm{O}(3)$	$7335(8)$	-1372(4)	3865(2)	49(3)	46(3)	23(2)	22(3)	1(2)	2(2)	39(2)
$\mathrm{O}(4)$	10299(8)	2176(4)	1791(3)	39(3)	34(3)	47(3)	-16(2)	$-1(3)$	5(2)	40(2)
$\mathrm{O}(5)$	10852(7)	-715(4)	1278(2)	31(3)	47(3)	31(2)	16(3)	4(2)	$-4(2)$	36(1)
O(6)	10416(7)	113(4)	3379(3)	25(2)	68(3)	24(2)	5(3)	-4(2)	3(2)	39(2)
O(7)	10347(7)	856(4)	49(3)	25(2)	53(3)	$38(3)$	-4(3)	$7(2)$	2(2)	38(2)
$\mathrm{O}(8)$	7275(9)	2840(4)	813(3)	$57(4)$	24(4)	86(4)	-3(3)	-16(4)	14(3)	56(2)
N	6099(7)	608(3)	2625(2)	19(2)	14(2)	15(2)	3(2)	-2(2)	-1(2)	16(1)
C(1)	4004(10)	-1164(4)	2549(4)	32(4)	12(2)	30(3)	-4(3)	8(3)	7(2)	25(2)
C(2)	7249(10)	-1790(4)	2072(3)	26(3)	23(3)	19(3)	$-3(3)$	-2(3)	3(2)	23(2)
C(3)	6931(1)	-1105(4)	3321 (3)	32(4)	23(3)	21(3)	4(3)	- 2(3)	$-3(2)$	25(2)
C(4)	9433(10)	1531(5)	1904(4)	24(3)	29(3)	31(3)	2(3)	3(3)	-2(3)	28(2)
C(5)	9902(10)	-255(5)	1593(4)	19(3)	30(3)	20(3)	-2(3)	-3(3)	$O(3)$	23(2)
C(6)	9607(9)	234(5)	2881(4)	16(3)	35(3)	29(3)	8(3)	3(3)	-5(3)	26(2)
C(7)	8984(10)	818(6)	324(3)	31(4)	32(3)	19(3)	-4(3)	-2(3)	$0(3)$	27(2)
C(8)	7140 (11)	2046(5)	809(4)	27(4)	30(3)	44(4)	-3(3)	$0(3)$	$9(3)$	34(2)
C(9)	4654(9)	1017(4)	2171(3)	17(3)	12(3)	28(3)	3(2)	$-1(3)$	4(2)	19(2)
C (10)	4843(8)	567(4)	1476(3)	16(3)	18(3)	18(2)	$-1(2)$	O(3)	1(2)	18(2)
C(11)	5891(9)	-274(4)	1496(3)	15(3)	23(3)	16(3)	-4(3)	- 2(2)	2(2)	18(2)
$\mathrm{C}(12)$	6274(9)	-644(4)	814(3)	25(3)	19(3)	24(3)	-3(3)	O(3)	2(2)	22(2)
C(13)	5629(10)	-250(5)	180(3)	23(3)	31(3)	19(3)	$-6(3)$	O(3)	1(2)	25(2)
C(14)	4567(9)	549(5)	198(3)	23(3)	29(3)	17(3)	--2(3)	-4(2)	$6(2)$	23(2)
$C(15)$	4128(9)	945(5)	856(4)	14(3)	25(3)	34(3)	1(3)	-4(3)	1(3)	24(2)
$C(16)$	5978(9)	1035(4)	3314(3)	19(3)	19(3)	20(2)	5(2)	$0(2)$	--1(2)	19(2)
C(17)	7054(10)	1793(4)	3477 (3)	27(4)	23(3)	24(3)	-2(3)	-4(3)	$-1(2)$	25(2)
C(18)	6818(11)	2236(5)	4117(4)	36(4)	21(3)	32(3)	2(3)	-1(3)	-5(2)	30(2)
C(19)	5570(11)	1954(5)	4589(3)	43(4)	25(3)	21(3)	7(3)	O(3)	$-7(3)$	30(2)
C(20)	4505(11)	1200(5)	4426(3)	36(4)	33(3)	19(3)	6(3)	5(3)	2(3)	29(2)
$\mathrm{C}(21)$	4703(9)	732(5)	3788(3)	23(3)	24(3)	27(3)	3(3)	3(3)	1(3)	24(2)

TABLE 4
COORDINATES ($\times 10^{3}$) OF HYDROGEN ATOMS ${ }^{a}$

Atom	x	y	z	Atom	x	y	z
H(C9)	338	86	243	H(C17)	784	210	305
$\mathrm{H}^{\prime}(\mathrm{C} 9)$	474	174	214	H(C18)	740	280	418
H(C12)	712	-117	80	H(C19)	549	237	506
$\mathrm{H}(\mathrm{Cl} 3)$	615	-51	-29	$\mathrm{H}(\mathrm{C} 20)$	355	88	480
$\mathrm{H}(\mathrm{C14})$	415	89	-26	$\mathrm{H}(\mathrm{C} 21)$	398	16	368
H(Cl5)	325	155	94				

${ }^{a}$ Isotropic thermal assigned to each H atom is $B=B_{\mathrm{iso}}^{\mathrm{eq}}+1$, where $B_{\mathrm{iso}}^{\mathrm{eq}}$ is that of the corresponding carbon atom.

Reaction of BZA with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$
A mixture of $18.1 \mathrm{~g}(0.1 \mathrm{~mol})$ of BZA and $70.46 \mathrm{~g}(0.14 \mathrm{~mol})$ of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in 500 ml n-heptane was heated to $80^{\circ} \mathrm{C}$ and stirred until complete dissolution of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ (for 24 hours). The hot mixture was filtered, the precipitate was washed with hot benzene and the washings were combined with the filtrate. The filtrate was rotary evaporated, and the dry residue was dissolved in 300 ml of petroleum ether, b.p. $40-70^{\circ} \mathrm{C}$. The solution was kept at $-5^{\circ} \mathrm{C}$ for 16 hours, the crystalline precipitate formed was filtered off, washed with cold petroleum ether and dried, yielding 2.23 g (4\%) of II. The sample of II used for elemental analysis was prepared by recrystallization from benzene. Found: $\mathrm{C}, 44.11$; $\mathrm{H}, 1.94$; $\mathrm{Fe}, 29.07$; N, 2.45. $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{Fe}_{3} \mathrm{NO}_{8}$, calcd.: $\mathrm{C}, 44.03 ; \mathrm{H}, 1.94 ; \mathrm{Fe}, 29.25 ; \mathrm{N}, 2.44 \%$. According to thermogravimetry dccomposition begins at $50^{\circ} \mathrm{C}$. IR spectrum: $\boldsymbol{v}(\mathrm{C} \equiv \mathrm{O}) 1963,1978,1988,2000$, 2023, 2032, 2062, $2071 \mathrm{~cm}^{-1}$. Mass spectrum, $m / e: 573(M), 545,517,489,461,433,405$, $377,349,321,293,269,237,209,183,182,181,93,92,78 .{ }^{1} \mathrm{H}$ NMR spectrum: δ $2.45\left(\mathrm{~d}, \mathrm{lH}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~d}, \mathrm{lH}, \mathrm{CH}_{2}\right) \mathrm{ppm}, \mathrm{AB}$ system, $J_{\mathrm{AB}} 14.8 \mathrm{~Hz} ; \boldsymbol{\delta} 4.235(\mathrm{~d}, \mathrm{lH}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 4.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.71\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{ppm}$, ABKM system, $J_{\mathrm{AK}} 5.9 \mathrm{~Hz}, J_{\mathrm{KM}} 5.9 \mathrm{~Hz}, J_{\mathrm{BM}} 5.9 \mathrm{~Hz} ; \delta 7.16 \mathrm{ppm}\left(\mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

After isolation of II the filtrate was rotary evaporated to give 70 ml of concentrated solution, which was cromatographed on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column ($d=35 \mathrm{~mm}$, $l=1400 \mathrm{~mm}$). 15.97 g of I was eluted with petroleum ether. Yield 35%, m.p. $80-81^{\circ} \mathrm{C}$, cf. $82-82.5^{\circ} \mathrm{C}$ according to the literature [3]. The mixture of substances not containing iron was subsequental eluted with acetone. After removal of acetone, 10 g of a liquid sample was obtained which was investigated by gas-liquid chromatography and mass spectroscopy and was found to consist of (yield, \%): aniline (20), benzyl alcohol (10), phenylbenzylamine (10), phthalimidine (5), hydrazobenzene (3), BZA (2) and non-identified substances (5).

When the reaction was performed under the same conditions in the presence of tungsten carbonyl, no increase in yields of I and II was observed.

References

1 A.N. Nesmeyanov, M.I. Rybinskaya and L.V. Rybin, Uspekhi Khimii, 48 (1979) 393.
2 M.M. Bagga, P.L. Pauson, F.J. Preston and R.I. Reed, J. Chem. Soc. Chem. Commun., (1965) 543.
3 M.M. Bagga, W.T. Flannigan, G.R. Knox, P.L. Pauson, F.J. Preston and R.I. Reed. J. Chem. Soc. (C), (1968) 36.

4 W.T. Flannigan, G.R. Knox and P.L. Pauson, J. Chem. Soc. (C), (1969) 2077.
5 G.W. Parshall, Accounts Chem. Res., 3 (1970) 139.
6 Yu.A. Ustynyuk, V.A. Chertkov, I.V. Barinov, J. Organometal. Chem., 29 (1971) C53.
7 M.I. Bruce, M.Z. Iqbal and F.G.A. Stone, J. Organometal. Chem., 40 (1972) 393.
8 H. Onoue and I. Moritani, J. Organometal. Chem., 43 (1972) 431.
9 M.A. Andrews and H.D. Kaesz, J. Amer. Chem. Soc., 99 (1977) 6763.
10 M.A. Andrews and H.D. Kaesz, J. Amer. Chem. Soc., 101 (1979) 7238.
11 N.S. Nametkin, V.D. Tyurin. V.V. Trusov, A.S. Batsanov and Yu.T. Struchkov, J. Organometal. Chem., 219 (1981) C26.
12 L.F. Dahl, W.R. Costello and R.B. King, J. Amer. Chem. Soc., 90 (1968) 5422.
13 H.B. Chin, M.B. Smith, R.D. Wilson and R. Bau, J. Amer. Chem. Soc., 96 (1974) 5285.
14 W. Clegg, Inorg. Chem., 15 (1976) 1609.
15 A.N. Nesmeyanov, M.V. Tolstaya, M.I. Rybinskaya, G.B. Shul'pin, N.G. Bokii, A.S. Batsanov and Yu.T. Struchkov, J. Organometal. Chem., 142 (1977) 89.
16 J.W. Johnson and P.M. Treichel, J. Chem. Soc. Chem. Commun., (1976) 688.
17 M.R. Garcia, M. Green, F.G. Stone, R.G. Simerville and A.J. Welch, J. Chem. Soc. Chem. Commun., (1981) 871.

18 A.N. Nesmeyanov, L.G. Makarova and V.N. Vinogradova, Izv. ^kad. Nauk SSSR, Ser. Khim., (1972) 1600.

19 W.K. Dean and D.G. Vanderveer, J. Organometal. Chem., 145 (1978) 49.
20 G. le Borgne and D. Grandjean. J. Organometal. Chem., 92 (1975) 381.
21 W.C. Hamilton, Acta Crystallogr., 18 (1965) 502.

[^0]: ${ }^{a} \mathrm{Bz}$ is the centroid of the $\mathrm{C}(10) \cdots \mathrm{C}(15)$ benzene ring.

